Cloud Mask Intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2


Cloud cover is a major limiting factor in exploiting time-series data acquired by optical spaceborne remote sensing sensors. Multiple methods have been developed to address the problem of cloud detection in satellite imagery and a number of cloud masking algorithms have been developed for optical sensors but very few studies have carried out quantitative intercomparison of state-of-the-art methods in this domain. This paper summarizes results of the first Cloud Masking Intercomparison eXercise (CMIX) conducted within the Committee Earth Observation Satellites (CEOS) Working Group on Calibration & Validation (WGCV). CEOS is the forum for space agency coordination and cooperation on Earth observations, with activities organized under working groups. CMIX, as one such activity, is an international collaborative effort aimed at intercomparing cloud detection algorithms for moderate-spatial resolution (10–30 m) spaceborne optical sensors. The focus of CMIX is on open and free imagery acquired by the Landsat 8 (NASA/USGS) and Sentinel-2 (ESA) missions. Ten algorithms developed by nine teams from fourteen different organizations representing universities, research centers and industry, as well as space agencies (CNES, ESA, DLR, and NASA), are evaluated within the CMIX. Those algorithms vary in their approach and concepts utilized which were based on various spectral properties, spatial and temporal features, as well as machine learning methods. Algorithm outputs are evaluated against existing reference cloud mask datasets. Those datasets vary in sampling methods, geographical distribution, sample unit (points, polygons, full image labels), and generation approaches (experts, machine learning, sky images). Overall, the performance of algorithms varied depending on the reference dataset, which can be attributed to differences in how the reference datasets were produced. The algorithms were in good agreement for thick cloud detection, which were opaque and had lower uncertainties in their identification, in contrast to thin/semi-transparent clouds detection. Not only did CMIX allow identification of strengths and weaknesses of existing algorithms and potential areas of improvements, but also the problems associated with the existing reference datasets. The paper concludes with recommendations on generating new reference datasets, metrics, and an analysis framework to be further exploited and additional input datasets to be considered by future CMIX activities.

Remote Sensing of Environment